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Polar Codes

Capacity achieving codes for
Symmetric binary-input discrete
memoryless channels (B-DMC) 1

Capacity is achieved under
Successive Cancellation(SC)
decoding for very large code
lengths (220 or more bits)
Objective : To implement a fast
decoder for polar codes Channel capacity polarization as a function of channel

instance.

1E. Arıkan, “Channel Polarization: A Method for
Constructing Capacity-Achieving Codes for Symmetric
Binary-Input Memoryless Channels”, IEEE Trans. Info.
Theory, 2009
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Decoding algorithms

Successive Cancellation (SC) decoder
Serial – bit-by-bit decoding
Complexity O(N logN)

Poor parallelism
Good performance only for very large block lengths > 220

Belief Propagation (BP)
Generic algorithm based on message passing
Performs well at practical block lengths (100-1000 bits)
Many stages can be implemented in parallel as there is no
interdependence among the bits
Iterative: may require more iterations to converge
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GPUs

Graphic Processing Unit
Many-core processors an array of multithreaded Streaming
Multiprocessors (SM)
Multiple levels of memory: registers< shared memory< global memory
Synchronization among SMs is possible only via global memory
Good for applying same computation on a large set of data

Our Specification
NVIDIA GTX 560 Ti - 384 cores clocking at 1.66GHz
Fermi architecture : Max of 1536 concurrent threads, Max of 1024
threads per block, Max of 8 blocks per SM
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Assumptions

Assumptions
We have a large number of codewords available to be decoded
Calculations are done assuming Likelihood Ratios are available as
floating point numbers
Rate 1/2 coding
An encoder structure based on recursive definition
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Encoding Graph

c = uG , where G, generator matrix, = F⊗n, nth Kronecker power of
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Figure : Polar Code Encoder for length 8
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Encoder
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Figure : An alternate way of representing the encoder

Bharath et al. (IIT Madras) GPU Polar Codes Nov 6, 2012 9 / 29



Encoder
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Overview

Bit 
Reversal
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Identifying parallelism

Thread Level Parallelism
Decoding a codeword using
inherent parallelism
i th thread updates i th and
(i + N/2)th nodes
To decode a N-length codeword,
N/2 threads are utilized

S
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ith
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Belief update

⊕LL1 R1

LL2 R2

L1 RR1

L2 RR2

RR1 =
1+ R1R2L2

R1 + R2L2

RR2 = R2.
1+ R1L1

R1 + L1

LL1 =
1+ L1L2R2

L1 + L2R2

LL2 = L2.
1+ L1R1

L1 + R1

Messages
Likelihood ratios as basis for
messages
Ri left-to-right (frozen bits)
Li right-to-left (from channel)
Sum-product equations

LR or LLR?
Avoid Jacobean computation (or
approximation)
Floating point multiplication not
expensive on GPU
LLR less susceptible to dynamic
range problems
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Memory management

Shared Memory
On-chip memory
Very low access latency compared to global memory
Limited - 48KB per SM
All computations in the shared memory
Bank conflicts are avoided

Table : Speed up using shared memory against global memory (time in ms)

Length Global memory Shared memory Speed-up

256 74.17 7.41 10
512 101.37 8.94 11
1024 234.66 20.5 12
2048 825.96 60.98 14
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Identifying parallelism

Block Level Parallelism
Decoding as many codewords as that could fit in shared memory

Table : #blocks launched with varying code lengths

Length (N) Shared mem/ # blocks # simultaneous

codeword (≤ 8) codewords
256 2KB 1536

128 = 8 (12 > 8) 24
512 4KB 1536

256 = 6 12
1024 8KB 1536

512 = 3 6
2048 16KB 1536

1024 = 1 3
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Memory Management

Registers
Fastest form of storage on GPU
Limited (32K) per SM
More registers per thread - less number of concurrent threads
For the Fermi architecture, if a thread uses 20 or less registers, then all
threads are active

Table : Number of registers used

Length # reg/thread # active threads

256 22 1408 (91.66%)
512 22 1280 (83.33%)
1024 22 1024 (66.67%)
2048 22 1024 (66.67%)
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Memory Management

Fast math operations, Intrinsics and Instruction Optimizations
Functions replaced by their intrinsics
Registers used per thread - 22
Registers used per thread after these optimizations - 19

Table : Speed-up using optimizations (for 35 iterations)

Length Throughput Speedup

256 17.57 1.1
512 8.71 1.2
1024 3.55 1.5
2048 1.23 -
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FER vs iterations
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Results

Optimizations done
Right choice of decoder architecture for thread level parallelism
Shared memory usage tuned for block level parallelism
Reducing register count using approximate fast math operations

Table : Throughput (Mbps) Performance with iterations

Length 10 15 20 25 30 35

256 57.20 38.82 30.34 24.42 20.32 17.57
512 29.08 19.98 15.01 12.08 10.15 8.71
1024 11.85 8.06 6.04 4.923 4.13 3.55
2048 4.089 2.79 2.11 1.71 1.43 1.23
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Summary

We have described a parallel implementation of a decoder for Polar
Codes using GPU
Using the right kind of architecture, a single stage can be reused
We have also applied optimizations to the usage of registers and
shared memory to get a good throughput
The resulting decoder is much faster than a CPU decoder and scales
with cores available provided enough codewords are available for
decoding
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Future Work

Working with larger block lengths
Codewords spills out of shared memory
Comparing with LLRs
Optimizing the BP update equations
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Thank you!
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Results

Table : Speedup for 1024 length codeword(35 iterations)

CPU CUDA

Platform Single Intel Core GTX 560 Ti
Time 0.06sec/codeword 0.038sec/288codewords

Throughput 8.33Kbps 2 3.55Mbps
Speedup - 436x

2The CPU code was executed on a single core using the general compiler optimizations. O3 flag was used
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Results
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Results
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Results
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