CUDA vs OpenCL

CUDA and OpenCL are two major programming frameworks for GPU computing. I have told briefly about them in one of the previous posts. Now, if you wanted to learn GPU Computing, which one to choose – CUDA or OpenCL?

Until recently, CUDA has attracted most of the attention from developers, especially in the High Performance Computing realm because of the good support from NVIDIA itself especially from the forums. But OpenCL is gaining ground rapidly. OpenCL software has now reached the point GPU programmers are taking a second look.

CUDA and OpenCL do mostly the same – it’s like Italians and French fighting over who has the most beautiful language, while they’re both Roman languages

nVidia’s CUDA is vendor-specific. It has better tools, better performance and there’s lot sample code, tools, documentation and utilities available. If you have an actual GPU project that you need to work on in the in short term and you can be certain that you only need to support high-end nVidia hardware, then CUDA is the way to go. OpenCL provides an open, industry-standard framework. As such, it has garnered support from nearly all processor manufacturers including AMD, Intel, and nVidia, as well as others that serve the mobile and embedded computing markets. As a result, applications developed in OpenCL are now portable across a variety of GPUs and CPUs. OpenCL, being an open standard, allows any vendor to implement OpenCL support on its products. Intel has announced that it will support OpenCL on future CPU products.

Ok, now you have two frameworks – which one to choose? Well, it depends on a lot of factors. If you are planning to implement a GPU project solely on nVidia’s cards, then CUDA is a better option. But if your application is to be deployed over a range of architectures then you need to work with OpenCL.

But to start off with, I personally prefer CUDA, because of the detailed documentation that nVidia has provided and also vast community support. You can post a question in nVidia forums (which are off-line now due to some security issues) and get clarifications from experts. And also there is Stackoverflow. The basic idea behind learning CUDA and OpenCL is the same. The skills and knowledge you develop while working with CUDA will mostly be transferrable to OpenCL later if needed. Also some tools like swan, convert a CUDA code into an OpenCL code. So, basically if you learn one, you can very easily work with the other. A good comparison of CUDA and OpenCL is shown here and here. You can also look in the references for more information.



  • Better marketing
  • Good support and documentation
  • Many features and toolsets
  • Works only on nVidia cards


  • Supports many architectures
  • It’s open standard – which we always want
  • No proper documentation
  • Provided by different vendors in various packages – no universal package

Recently, OpenCL is gaining grounds on CUDA – this might be a reason that nVidia recently released its source code to developers and also stopped providing OpenCL support in newer releases of CUDA. Well, that indicates there is a stiff competition going on and I personally feel it’s only a matter of time that OpenCL will reach the level of CUDA.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s